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A numerical study of doubly periodic deep-water short-crested wave instabilities,
arising from various quartet resonant interactions, is conducted using a high-order
Boussinesq-type model. The model is first verified through a series of simulations
involving classical class I plane wave instabilities. These correctly lead to well-known
(nearly symmetric) recurrence cycles below a previously established breaking threshold
steepness, and to an asymmetric evolution (characterized by a permanent transfer of
energy to the lower side-band) above this threshold, with dissipation from a smoothing
filter promoting this behaviour in these cases. A series of class Ia short-crested wave
instabilities, near the plane wave limit, are then considered, covering a wide range of
incident wave steepness. A close match with theoretical growth rates is demonstrated
near the inception. It is shown that the unstable evolution of these initially three-
dimensional waves leads to an asymmetric evolution, even for weakly nonlinear cases
presumably well below breaking. This is characterized by an energy transfer to the
lower side-band, which is also accompanied by a similar transfer to more distant
upper side-bands. At larger steepness, the evolution leads to a permanent downshift
of both the mean and peak frequencies, driven in part by dissipation, effectively
breaking the quasi-recurrence cycle. A single case involving a class Ib short-crested
wave instability at relatively large steepness is also considered, which demonstrates
a reasonably similar evolution. These simulations consider the simplest physical
situations involving three-dimensional instabilities of genuinely three-dimensional
progressive waves, revealing qualitative differences from classical two-dimensional
descriptions. This study is therefore of fundamental importance in understanding the
development of three-dimensional wave spectra.

1. Introduction
The nonlinear evolution of unstable surface wavetrains is of fundamental

importance to the understanding of wave spectrum development. Up to now, most
studies regarding the nonlinear evolution of the lowest-order class I (Benjamin & Feir
1967) instability have been two-dimensional. This is true of wave-tank experiments
(e.g. Lake et al. 1977; Melville 1982; Tulin & Waseda 1999), analytical investigations
(e.g. Stiassnie & Kroszynski 1982), as well as numerical simulations (e.g. Lo & Mei
1985; Madsen, Bingham & Liu 2002). This is justifiably the case, as the dominant
class I instability is indeed two-dimensional, as shown, for example, in the analysis
of McLean (1982b). It should be mentioned, however, that Lo & Mei (1987) and
Trulsen & Dysthe (1997) have also simulated three-dimensional class I instabilities,
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in the latter case demonstrating a frequency downshift in the absence of dissipation
(this finding is backed further by the experimental work of Trulsen, Stansberg &
Velarde 1999). Shemer & Chamesse (1999) have additionally made numerical and
experimental investigations of three-dimensional gravity–capillary wave instabilities.
Numerous authors have also studied the predominantly three-dimensional class II
plane wave instability in a weakly nonlinear (e.g. Stiassnie & Shemer 1987; Shrira,
Badulin & Kharif 1996), as well as a fully-nonlinear context (Xue et al. 2001; Fuhrman,
Madsen & Bingham 2004; Fructus et al. 2005), leading to spectacular crescent-shaped
surface patterns (see also the experimental work of, e.g. Melville 1982; Su et al. 1982).
However, this type of instability becomes dominant only when the incident wave
steepness is relatively large.

As a result of these (and numerous other) studies, the dynamics of plane wave
instabilities are by now relatively well, though by no means completely, understood. In
contrast, relatively little attention has been paid to the unstable evolution of genuinely
three-dimensional wavetrains, which are of interest, as strictly two-dimensional carrier
waves are rare in the open sea. The simplest progressive three-dimensional wave
patterns are so-called short-crested waves, defined here simply as doubly periodic
wave patterns that are progressive in a single horizontal dimension. Steady solutions
of various orders for such three-dimensional wave patterns have been provided, for
example, by Hsu, Tsuchiya & Silvester (1979), Roberts (1983), Roberts & Peregrine
(1983) and Bryant (1985). Such patterns have in turn been demonstrated to be unstable
to infinitesimal perturbations in deep water by Ioualalen & Kharif (1994) (see also
Badulin et al. 1995; Kimmoun, Ioualalen & Kharif 1999b), as well as in finite depth
by Ioualalen, Roberts & Kharif (1996) and Ioualalen, Kharif & Roberts (1999). Of
these, the deep-water analyses are perhaps of the most fundamental importance, as
they pertain to fully dispersive waves in the open ocean. Short-crested wave patterns
in deep water have also been studied experimentally by Kimmoun, Branger &
Kharif (1999a), who found that some experiments with high steepness were affected
by modulational instabilities. Hammack, Henderson & Segur (2005) also discussed
instabilities in connection with their short-crested wave experiments, though many
of their observed unsteady features have since been explained as generational effects
(see Fuhrman & Madsen 2006; Henderson, Patterson & Segur 2006).

The aim of the present work is to study the relatively long-term fully nonlinear
evolution of lowest-order short-crested wave instabilities (i.e. those involving resonant
quartet interactions) in deep water via direct numerical simulation. The numerical
model used is based on the highly accurate fully nonlinear Boussinesq-type
formulation of Madsen et al. (2002) and Madsen, Bingham & Schäffer (2003), using
the efficient finites difference solutions of Fuhrman & Bingham (2004). There is a
need for such an investigation, as (to our knowledge) numerical simulations involving
the instability of initially three-dimensional progressive wavetrains are non-existent in
the literature, even in a weakly nonlinear context. The simulations considered herein
therefore provide a deeper understanding of the evolution of simple three-dimensional
wave spectra. Note that the spectral evolution of ensemble random three-dimensional
waves has been studied previously by Onorato et al. (2002) and Dysthe et al. (2003),
demonstrating numerically the formation of the ω−4 power law.

As shown by, for example, Ioualalen & Kharif (1994), there are two types of possible
quartet resonances involving short-crested wave patterns, deemed to be of so-called
class Ia and Ib, both of which will be considered here. The present study will focus
primarily on the simulation of class Ia instabilities, which involve both components of
the incident short-crested wave in the same resonant interaction. However, an example
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of a (computationally more demanding) class Ib instability will also be considered
for completeness. As will be shown, the unstable evolution of these three-dimensional
patterns is qualitatively different from that of initially plane waves.

The remainder of this paper is organized as follows. The Boussinesq-type model
used throughout this numerical study is described briefly in § 2. A series of simulations
involving classical two-dimensional class I instabilities, used primarily for validation
and comparative purposes, are first provided in § 3. Simulations of short-crested wave
instabilities are then considered in § 4, with class Ia and Ib instabilities respectively
covered in § § 4.2 and 4.3. The various results are discussed in § 5, with conclusions
drawn in § 6.

2. The numerical model
The numerical model used in the present work is based on the fully nonlinear, high-

order Boussinesq-type formulation of Madsen et al. (2002, 2003). This method uses
exact representations of the kinematic and dynamic free-surface conditions expressed
in terms of surface quantities as

∂η

∂t
= w̃ (1 + ∇η · ∇η) − Ũ · ∇η, (2.1)

∂Ũ
∂t

= −g∇η − ∇
(

Ũ · Ũ
2

− w̃2

2
(1 + ∇η · ∇η)

)
, (2.2)

where Ũ = (Ũ , Ṽ ) = ũ + w̃∇η. Here ũ = (ũ, ṽ) = u(x, η, t) and w̃ = w(x, η, t) are the
horizontal and vertical velocities directly on the free surface z = η, g = 9.81 m s−2 is
the acceleration due to gravity, ∇ = (∂/∂x, ∂/∂y) is the horizontal gradient operator,
and t is time. The vertical distribution of fluid velocity is approximated via a Padé-
enhanced truncated series solution of the Laplace equation, corresponding to

u(x, z, t) = (1 − α2∇2 + α4∇4)û∗(x, t) + ((z − ẑ)∇ − β3∇3 + β5∇5)ŵ∗(x, t), (2.3)

w(x, z, t) = (1 − α2∇2 + α4∇4)ŵ∗(x, t) − ((z − ẑ)∇ − β3∇3 + β5∇5)û∗(x, t), (2.4)
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(2.5)

Optimal velocity distributions are obtained with the expansion point near ẑ = − h/2,
and we adopt this value throughout. Considering (2.3) and (2.4) at the sea bottom
z = − h, the kinematic bottom condition (neglecting bottom slope) becomes(

1 − 4
9
γ 2∇2 + 1

63
γ 4∇4

)
ŵ∗ +

(
γ ∇ − 1

9
γ 3∇3 + 1

945
γ 5∇5

)
û∗ = 0, (2.6)

where γ = (h + ẑ) = h/2. It is straightforward to include variable depth terms;
however, as the present work is restricted to flat bottoms, they are not presented
here. Analysis of this system has shown that it provides excellent linear and nonlinear
properties to (wavenumber times depth) kh ≈ 25, and accurate velocity kinematics to
kh ≈ 12, largely eliminating any shallow-water limitations conventionally associated
with Boussinesq-type methods. Thus, over a large range of kh, the system may
be regarded as a highly accurate approximation to the exact Laplace problem for
nonlinear water waves.
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The system of PDEs is solved numerically using the high-order (37-point) finite-
difference spatial discretizations originally presented by Fuhrman & Bingham (2004),
combined with the fifth-order six-stage explicit Runge–Kutta time-stepping scheme of
Cash & Karp (1990). Closed (slip) boundary conditions are imposed on the exterior
domain. Specifically, this corresponds to setting ∂η/∂x = 0, ∂mu/∂xm = 0, ∂nv/∂xn = 0
and ∂nw/∂xn = 0 at x-boundaries; and ∂η/∂y = 0, ∂nu/∂yn =0, ∂mv/∂ym =0 and
∂nw/∂yn = 0 at y-boundaries; where m =0, 2, 4 and n= 1, 3, 5. These are implemented
by simply reflecting the variables evenly (for odd derivatives) or oddly (for even
derivatives) about the respective boundaries.

The discretization results in a numerical scheme that is, in principle, non-dissipative,
which can be shown through standard linear Fourier analysis. However, weak
dissipation is added in the form of a tenth-order (109-point, octagon shaped)
Savitzky & Golay (1964) type smoothing filter, applied incrementally (after every
ns time steps), which is generally necessary to remove (unphysical) high-wavenumber
disturbances arising from the discretization of the nonlinear terms. In some cases, the
filter additionally serves to prevent a computational breakdown when the waves are
near breaking. In such instances (which will be clearly identified), wave breaking is
thus prevented. A Fourier analysis of the filter is provided in the Appendix, which
quantitatively demonstrates that its dissipative effects are primarily restricted to high
wavenumber modes.

As shown by Fuhrman & Bingham (2004), the dominant computational expense of
the model involves the iterative solution of an ill-conditioned sparse matrix problem,
and simulations presented here use the matrix-free Fourier space preconditioner
(within the GMRES algorithm of Saad & Schultz 1986) and irrotational operators,
as discussed therein.

In all simulations, a perturbed incident wavefield is spread across the entire model
domain as initial conditions, removing any potential background noise from an initial
wavefront. These same conditions are then repeated indefinitely within a wavemaker
region (relaxed over 65 grid-points) at the left-hand boundary, with x = 0 defined
as the end of the wavemaker region. Additionally, a 100 grid-point sponge layer is
placed at the right-hand boundary to absorb the outgoing wavefield. This works by
simply multiplying the computed values after each time step by a decay function of
the form 1 − (exp(xµ

r ) − 1)/(exp(1) − 1), where xr is a scaled x-coordinate (uniformly
increasing from 0 at the start of the sponge layer to 1 at the end), and where the
relaxation coefficient is taken as µ = 3.5. All simulations are run for a sufficient length
of time to ensure that the energy (travelling roughly at the group velocity of the
primary wavetrain) has propagated the full length of the numerical basin, after which
the harmonic evolution effectively reaches a steady state.

3. Simulation of class I plane wave instabilities
We will begin this numerical study by first considering simulations of class I plane

wave instabilities, whose evolution has been extensively studied in the literature.
These simulations will aid in the interpretation of the short-crested simulations to be
presented in § § 4.2 and 4.3, while also serving as validation of the current model on
a closely related phenomenon.

3.1. Model set-up

These simulations use numerically exact plane progressive incident waves computed
from the method of Fenton (1988), having angular frequency ω0, crest-to-trough
waveheight H (= 2a), wavelength Lx = 2π/k, wavenumber vector k0 = (k, 0) =
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(1, 0) m−1, and dimensionless depth kh = 2π. The generated carrier waves have a
peak at x = 0 at t = 0. The perturbation frequencies and wavenumbers are chosen to
excite the dominant class I instability based on the (deep water) method of McLean
(1982b). Thus, to excite the desired instability, two perturbations of the form

η′
a =

εH

2
sin(kax − ωat), (3.1)

ũ′
a =

ε
√

gkaH

2
sin(kax − ωat) exp(kaη), (3.2)

w̃′
a = −ε

√
gkaH

2
cos(kax − ωat) exp(kaη), (3.3)

are superimposed over the corresponding base variables, with Ũ ′
a = ũ′

a + w̃′
aηx , each

with relative strength ε = 0.02. The second perturbation has the same form as in
(3.1)–(3.3), but with subscript b. This corresponds to a uni-directional variant of
the wavemaker conditions used previously in Fuhrman et al. (2004). While these
simulations are, in principle, two-dimensional, they are still simulated using two
horizontal dimensions (on a 8193 × 17 grid), with resolution �x = L/32, �t ≈ T/32,
and smoothing interval ns =32, matching the set-up used in the forthcoming short-
crested wave simulations.

The perturbation wavenumber vectors are defined as

ka = (ka, 0) = (1 + p, q)k, kb = (kb, 0) = (1 − p, −q)k, (3.4)

with q = 0, while the perturbation frequencies are defined in terms of a single
parameter δ, such that they are centred about the primary frequency ω0

ωa = (1 + δ)ω0, ωb = (1 − δ)ω0. (3.5)

Here, δ is computed as

δ = p + Re{σ}
√

gk

ω0

, (3.6)

with σ the corresponding eigenvalue from the method of McLean (1982b),
representing a dimensionless complex frequency in a frame of reference moving
with the primary wave. As can be seen from (3.5), the perturbation waves with
subscript a/b correspond to unstable upper/lower side-bands of the primary wave.
Chosen in this manner, the perturbation waves in conjunction with the primary wave
satisfy the quartet resonance conditions

2ω0 = ωa + ωb, (3.7)

2k0 = ka + kb. (3.8)

It should finally be mentioned that, as shown by McLean (1982a), a finite depth can,
in fact, cause the dominant class I instability to become three-dimensional. Indeed,
even with the relatively large dimensionless depth kh = 2π used here, we have found
(from our own implementation of McLean’s finite-depth analysis) that the dominant
class I instability is, in fact, slightly three-dimensional for roughly ak � 0.107 (this
matches reasonably with figure 6 of Trulsen & Dysthe 1996). However, as our
intention is to approximate a deep-water problem in a single horizontal dimension
(both for comparison against previous deep-water studies, and for later contrast
with short-crested simulations in two-horizontal dimensions), we will base our model
inputs on the deep-water analysis of McLean (1982b), as described above.
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Figure 1. Computed evolution of the primary frequency (full line) and lower/upper side-bands
(long/short dashed lines) from simulations of class I plane wave instabilities with ε = 0.02 and
(a) ak = 0.10, (b) 0.11, (c) 0.12, (d) 0.13. The simulations correspond to dominant instabilities
based on the method of McLean (1982b) with (a) (p, q) = (0.18, 0), σ = −0.0880 +0.00408i;
(b) (p, q)= (0.19, 0), σ = −0.0924 + 0.00485i; (c) (p, q) = (0.20, 0), σ = −0.0968 +0.00565i;
(d) (p, q)= (0.22, 0), σ = −0.1059 +0.00650i. The dashed vertical lines in (c) and (d) indicate
the estimated breaking location.

3.2. Computed results

The computed evolution of the primary ω0 and upper/lower side-band frequencies
ωa/ωb from a series of class I simulations having initial steepness ak = 0.10, 0.11,
0.12, and 0.13 are provided in figure 1, with the precise (p, q) and σ values as
indicated in the caption. These results are best viewed within the context of the
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ak Class I Class Ia Class Ib

0.08 — 0.19 —
0.09 — 0.24 —
0.10 0.31 0.26 —
0.11 0.42 0.37 —
0.12 0.62 — —
0.125 0.61 0.49 —
0.13 0.74 — —
0.15 — 0.67 —
0.20 — 1.61 0.79

Table 1. Computed maximum forward surface slopes (i.e. max(−ηx)) for simulations of class
I plane wave instabilities (from § 3), as well as class Ia and Ib short-crested-wave instabilities
(from § 4). These are computed using first-order difference approximations along y = 0 over
the final 600 times steps. Note that results from some class Ia simulations not specifically
discussed in § 4.2 are included here for completeness.

earlier class I breaking threshold steepness studies of Banner & Tian (1998) and
Henderson, Peregrine & Dold (1999). Specifically, we will here consider their results
with constant p =0.20 (equivalent to their 5 waves in one modulation), which is
nearest to the theoretically dominant p values used in the current simulations (in the
range 0.18 � p � 0.22). Figures 1 and 2 of Banner & Tian (1998) indicate that for
p = 0.20 (their N = 5), the unstable evolution with ak = 0.11 leads to a recurrence cycle,
whereas an increase to ak = 0.1125 leads to breaking. Figure 1 of Henderson et al.
(1999) similarly predicts recurrence with ak = 0.11 and breaking with ak = 0.12 (see
also Dold & Peregrine 1986). Our computed results are generally consistent with these
earlier studies. Below the threshold ak = 0.1125, as illustrated in figures 1(a) and 1(b)
(with ak = 0.10 and 0.11), the simulations lead to a nearly symmetric recurrence cycle,
widely established as the correct evolution in weakly nonlinear cases. Above this
threshold, where dissipative breaking would be physically expected, the simulations
lead to an asymmetric evolution, characterized by a permanent transfer of energy to
the lower side-band, which is apparent in both figures 1(c) and (d) (respectively, with
ak = 0.12 and 0.13).

To characterize the local steepness of the developed wavefields, the maximum
computed forward surface slopes (i.e. max(−ηx)) from these simulations are provided
in the second column of table 1. These will be used to formulate an approximate
(empirical) breaking criterion, to be used throughout this work. Also provided in
table 1 are computed values from simulations of class Ia and Ib short-crested
wave instabilities, to be discussed in § 4. Here, it is noteworthy that for the class
I simulation with ak =0.12 (i.e. slightly above the previously mentioned breaking
threshold steepness) the maximum computed surface slope matches the threshold
tan(32◦) ≈ 0.62 used in the wave-breaking model of Sørensen, Madsen & Schäffer
(1998), providing confidence that the computed surface slopes are indeed reasonably
indicative of a breaking event. A similar simulation with ak = 0.125 (and p = 0.21,
not specifically shown here) results in a slightly lower value of 0.61. Based on these
values, we will estimate the location of incipient wave breaking as the point where
the forward surface slope first exceeds the empirical threshold 0.61. These locations
are marked by vertical dashed lines in figures 1(c) and 1(d), which are both seen to
immediately precede the observed permanent separation of the side-bands.
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Figure 2. Computed relative mean energy flux over an approximate group period from
simulations of class I plane wave instabilities with (a) ak = 0.11 and (b) 0.12. The vertical
dashed line in (b) marks the estimated breaking location.

To quantify the numerical dissipation introduced from the filtering in these
simulations, we estimate the mean energy flux Ef at points along the domain by

Ef =
1

Tg

∫ t+Tg

t

∫ η

−h

(p+u) dz dt, (3.9)

where the group period is taken as Tg = T/δ, rounded to the nearest time step,
with T = 2π/ω0 the period of the primary wave. This computation first requires
the numerical evaluation of the velocity profiles via (2.3) and (2.4), with the excess
(dynamic) pressure p+ then computed from the integrated vertical Euler equation. It
should be noted that the higher-order term ρ(u2 +w2)u/2 (from the exact expression
for the energy flux, with ρ the fluid density) has been omitted within the double
integral in (3.9). We have found that this makes little difference at locations where
the waves are de-modulated, while reducing the sensitivity of the computation to
apparent numerical errors in the fifth-derivatives when the waves are very steep.

The computed (relative) mean energy flux for ak = 0.11 and 0.12 (i.e. both below
and above the breaking threshold steepness) are presented in figure 2. As mentioned
previously, a Fourier analysis of the tenth-order smoothing filter used throughout
this work is provided in the Appendix, which shows that the associated dissipative
effects are primarily restricted to rather high wavenumber modes. These effects should
therefore be expected to become most important in the vicinity of steep wave events.
This is generally supported by figure 2, which shows decreases in the mean energy flux
occurring in a loosely step-like fashion along the domain. From figure 2, we estimate
that the flux of energy in both cases is conserved to within roughly 2 % through
the first recurrence cycle, and to within approximately 3 % through the second. With
ak =0.12, the flux of energy is conserved to within 5 % over the length of the domain.
We have found reasonably similar results for the other cases.
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While their qualitative behaviour differs considerably (see again figures 1b and 1c),
the energy losses in these two cases are, in fact, quite similar. This is not altogether
surprising, given the relatively small difference in the incident wave steepnesses. We
emphasize, however, that the recurrent results below the breaking threshold are
not sensitive to the precise level of smoothing. For example, an otherwise identical
simulation with ak = 0.11, where the smoothing frequency is increased to every
ns = 1 time steps (i.e. an application 32 times more frequent), leads to essentially the
same evolution as depicted in figure 1(b). Moreover, simulations with less smoothing
(ns = 64) similarly lead to the same evolution with ak = 0.11, but to a computational
breakdown with ak = 0.12, which we find is typical of breaking cases. Thus, for the
simulated class I cases with ak � 0.12, it is our interpretation that high-wavenumber
dissipation from the smoothing filter prevents wave breaking, and is responsible for
the observed asymmetric evolution.

When viewed in this context, these results are consistent with numerous other nume-
rical studies (e.g. Trulsen & Dysthe 1990; Hara & Mei 1991; Skandrani, Kharif &
Poitevin 1996) as well as physical experiments (e.g. Melville 1982; Tulin & Waseda
1999), which have found that the frequency downshift phenomenon (within class I
plane wave instabilities) is caused by combined nonlinearity and dissipation (either
from breaking, wind effects, or viscosity and surface tension). These simulations
convincingly demonstrate that, while the smoothing filter apparently serves as the
dissipative mechanism promoting a permanent transfer of energy to the lower side-
band for sufficiently steep waves, it does not artificially promote this phenomenon
at lower values of the wave steepness. As will be seen, it is important to establish
that the model properly predicts this particular behaviour, as it will become highly
relevant in the forthcoming simulations of short-crested wave instabilities.

We finally note that the results presented here are also consistent with the work
of Madsen et al. (2002), who considered reasonably similar class I simulations (using
the same Boussinesq-type model, but in a single horizontal dimension) with incident
steepness ak = 0.10, 0.105 and 0.133. These lead to qualitatively similar evolutions,
with simulations at low steepness (ak = 0.10 and 0.105) leading to recurrence, and
with the case of ak = 0.133 demonstrating good agreement (before, as well as after
the reported region of physical breaking) with the measured frequency downshift of
Tulin & Waseda (1999), as indicated in their figure 15b. In these simulations, wave
breaking was similarly prevented by high-wavenumber dissipation from a smoothing
filter. Thus, while this methodology does not model wave breaking in any physical
sense (the actual level of dissipation is probably underestimated), there is evidence
that results computed in this manner are still qualitatively useful, indicative of the
continued evolution after a dissipative steep-wave event. They will therefore continue
to be presented throughout the present work, with the estimated location of incipient
breaking clearly marked when it is relevant.

4. Simulation of short-crested wave instabilities
Having established the model accuracy in simulating two-dimensional class I

instabilities, we will now turn our attention to the simulation of three-dimensional
short-crested wave instabilities, which is the primary focus of the present work.

4.1. Model set-up

The basic model set-up now uses the steady third-order short-crested wave solution of
Hsu et al. (1979) as the incident wave, which has been transformed from dimensionless
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to dimensional quantities. This solution is comprised of the two primary wavenumber
vectors

k01 = (kx, ky), k02 = (kx, −ky), (4.1)

both having angular frequency ω0. All simulations are normalized using the wave-

number modulus k =
√

k2
x + k2

y = 1 m−1, with dimensionless depth kh = 2π, i.e. deep

water, maintaining the same parameters as in § 3. These short-crested solutions will
be characterized by the wave steepness ak, where a is again defined as half the total
crest-to-trough waveheight, and the angle θ such that

(kx, ky) = (sin θ, cos θ)k. (4.2)

Thus, θ = 0◦ and 90◦, respectively, correspond to the standing and plane short-crested
wave limits.

Instabilities are excited within the model by superimposing two short-crested
perturbation waves of the form

η′
a = εa1 cos(ωat − kaxx) cos (kayy), (4.3)

Ũ ′
a = εa1ωa

kax

ka

cosh ka(h + η)

sinh kah
cos(ωat − kaxx) cos(kayy), (4.4)

Ṽ ′
a = εa1ωa

kay

ka

cosh ka(h + η)

sinh kah
sin(ωat − kaxx) sin(kayy), (4.5)

over the corresponding base variables, each with relative strength ε. Here ka =√
k2

ax + k2
ay , while a1 is the amplitude of the first-order primary wave component from

the third-order solution of Hsu et al. (1979). The second perturbation wave has the
same form as that in (4.3)–(4.5), with subscript b. The short-crested perturbation
wavefield therefore consists of the four wavenumber vectors

ka1 = (kax, kay), ka2 = (kax, −kay), (4.6)

kb1 = (kbx, kby), kb2 = (kbx, −kby), (4.7)

with each short-crested wave again having equal x-components, with opposite y-
components. The determination of these perturbation components will be made clear
in the following subsections.

4.2. Simulation of class Ia short-crested wave instabilities

Ioualalen & Kharif (1994) demonstrate in their analysis that for low to moderate
wave steepness, and relatively large (or sufficiently small) θ , the dominant short-
crested wave instability is of so-called class Ia. Specifically, they present instability
diagrams for short-crested waves with incident angle θ = 80◦ and steepness ak = 0.10
and 0.20 in their figure 8. These are presented in the traditional (p, q)-plane, where
p and q , respectively, govern the perturbation wavenumbers in the propagating and
transverse directions, in a manner to be described. From this figure, we estimate
the dominant instabilities for these cases to occur at (p, q) =(0.16, 0) and (0.275, 0),
respectively. Based on these two values, combined with the third constraint that p = 0
when ak = 0, the dominant p values for other steepnesses considered are estimated
through the empirical second-order polynomial

p = 1.825ak − 2.25(ak)2. (4.8)
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Class ak θ (deg.) (kx, ky)/k ω0 (s−1) (p, q) δ ε

Ia 0.10 80 (0.984,0.174) 3.144 (0.16,0) 0.0806 0.02
Ia 0.125 80 (0.984,0.174) 3.150 (0.193,0) 0.0954 0.02
Ia 0.15 80 (0.984,0.174) 3.159 (0.223,0) 0.117 0.02
Ia 0.20 80 (0.984,0.174) 3.185 (0.275,0) 0.149 0.02
Ib 0.20 60 (0.866,0.5) 3.161 (0.173,0.1) 0.111 0.10

Table 2. Summary of parameters used for the simulation of various short-crested wave
instabilities. Each case approximately matches the dominant instability based on the analysis
of Ioualalen & Kharif (1994).

This leads to the values given in table 2, which provides a summary of the parameters
used in each of the short-crested wave simulations considered in this work. A more
precise variation of dominant p values versus ak has not been tabulated or plotted
in the liturature, hence this approach seems a reasonable and systematic means
for obtaining the input values for the purposes of the present numerical study. As
can be seen in table 2, each of the simulations for the class Ia instabilities uses a
relatively small relative perturbation strength ε = 0.02, similar to § 3, approximating
an infinitesimal disturbance.

To promote a class Ia short-crested wave instability, the perturbation wavenumber
components are defined as

(kax, kay) = (sin θ + p, cos θ + q)k, (4.9)

(kbx, kby) = (sin θ − p, cos θ + q)k, (4.10)

with corresponding perturbation frequencies ωa , ωb defined as in (3.5). The value of δ

could, in principle, be obtained directly from the real part of the eigenvalues σ from
the stability analysis of Ioualalen & Kharif (1994), similar to (3.6). Unfortunately, they
only report the imaginary parts in the analysis (corresponding to the strength of the
instability). We have therefore opted to determine the parameter δ directly from the
model, by locating the side-band peaks from Fourier analyses of time series (from
preliminary simulations) at points sufficiently far from the wavemaker to have been
affected only by the initial wavenumber disturbance. This leads to the values given in
table 2.

The perturbation waves, in conjunction with the primary short-crested wave, are
now seen to satisfy two quartet resonant interactions

k01 + k02 = ka1 + kb2, k01 + k02 = kb1 + ka2, (4.11)

both in conjunction with (3.7). Each of these interactions involves the resonance of
both primary short-crested wave components with a single component from both
perturbation waves a/b. The wavenumber vectors in (4.11) are again as defined
in § 4.1. As noted previously, the dominant class Ia instabilities conveniently have
q =0, which from (4.2), (4.9) and (4.10) means that kay = kby = ky . This is a special
case, particularly attractive for numerical simulation with the present model, since
through symmetry about the side-walls, the computational domain need only consist
of a single half transverse wavelength. This might also make them the most easily
observed experimentally, as the side-walls (of a finite width tank) can govern the
selection of the transverse instability as discussed, e.g. by Fuhrman & Madsen (2005),
within the context of class II plane wave instabilities.
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Class ak Grid Lx/�x Ly/�y T/�t ns Time steps CPU (h)

Ia 0.10 8193 × 17 32 32 31.9 32 20 000 164
Ia 0.125 8193 × 17 32 32 31.9 32 20 000 185
Ia 0.15 8193 × 17 32 32 31.8 32 20 000 211
Ia 0.20 4097 × 17 32 32 31.5 4 10 000 60
Ib 0.20 2049 × 65 25 25.6 31.8 8 7 000 93

Table 3. Computational summary for the simulations of short-crested wave instabilities. All
simulations use k =1 m−1 and �t = 0.0626 s, with period T =2π/ω0.

A computational summary of the various short-crested simulations considered in
this work is provided in table 3, which includes the size of the domain, the spatial/
temporal resolution, the smoothing interval ns , the number of time steps, as well as the
required CPU time for each case. All simulations have been run on a single 3.2 GHz
Pentium 4 processor, with 2 GB RAM. Here it can be seen that the various simulations
are computationally demanding, with the longest simulation requiring nearly 9 days.
These demands could probably, in some cases, be reduced via the use of periodic
boundaries. We prefer the use of a long domain when possible, however, as it is more
physically realistic, having the near physical equivalent of an experimental wavetank.
Accordingly, the current generation method permits the introduction of longitudinal
perturbation wavenumbers that are not necessarily an exact fraction of the primary
wave, while also allowing any wavenumbers corresponding to a given frequency to
adjust naturally (owing to amplitude dispersion) along the tank. Moreover, these
simulations also demonstrate applications of the present fully nonlinear method on
large computational domains, approaching sizes of interest for practical engineering
problems. If future comparisons with periodic boundaries are desired, however, it is
commonplace to convert the evolution in space to time using t = x/cg , where cg is the
group velocity of the primary wavetrain.

The computed harmonic amplitudes of the primary wave ω0 and the upper/lower
side-band frequencies ωa/ωb from the simulations of class Ia short-crested wave
instabilities are shown in figure 3. The harmonic analyses are computed through
linear-least-squares regression of time series at points along y = 0. The theoretical
growth is also shown by the ◦ in figures 3(a) and 3(d), for the two cases where the
precise (p, q) values have been determined directly from the analysis of Ioualalen &
Kharif (1994). The theoretical growth rates Im{σ} for these two cases have then been
estimated from their figure 10. As can be seen, the growth of the perturbations near
the inception in both cases matches closely with the theory, serving as validation for at
least the initial stage of these simulations. At later stages, the computed growth slows
compared to the theory in figure 3(a), leading to a quasi-recurrence cycle, while the
theoretical growth is maintained almost exactly for the lower side-band in figure 3(d)
to x ≈ 29Lx .

From the weakly nonlinear cases depicted in figure 3(a) and 3(b) (respectively, with
ak =0.10 and 0.125), we observe a quasi-recurrence cycle, as was previously noted.
The unstable evolution of these three-dimensional waves is, however, qualitatively
different from the previously observed evolution of weakly nonlinear plane class I
instabilities. The recurrence cycle observed in figures 3(a) and 3(b) is not symmetric:
after the initial growth phase, the lower side-band maintains an amplitude larger
than that of the upper. This is more pronounced for the case with larger steepness
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Figure 3. Computed evolution of the primary frequency (full line) and lower/upper side-bands
(long/short dashed lines) from simulations of class Ia short-crested wave instabilities with
ε = 0.02, θ =80◦, and steepness (a) ak = 0.10, (b) 0.125, (c) 0.15, (d) 0.20. The circles in
(a) and (d) indicate the theoretical exponential growth, given by εa1 exp(Im{σ}

√
gkx/cg),

where (a) Im{σ} =0.0031 and (d) 0.99. The dashed vertical lines in (c) and (d) indicate the
estimated breaking locations.

ak = 0.125 (figure 3b), though the quasi-recurrence cycle is still evident for virtually
the entire length of the computational basin. Based on the empirical breaking criterion
from § 3, these class Ia cases with ak � 0.125 would not lead to physical breaking, as
the maximum computed forward surface slopes given in table 1 are well below the
previously determined threshold of 0.61. Note that additional testing has shown that
similar simulations with even lower steepness (i.e. ak � 0.10, as given in table 1) lead
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Figure 4. Computed relative mean energy flux over an approximate group period from
simulations of class Ia short-crested wave instabilities with (a) ak = 0.10 and (b) 0.125.

to evolutions qualitatively similar to figure 3(a), though we do not present them here
for brevity.

To quantify the energy losses due to the filtering in these simulations, the mean
energy flux is again estimated along the domain via (3.9), which is now also integrated
across the width of the computational domain. The results for the cases with ak = 0.10
and 0.125 are provided in figure 4 as examples. Figure 4(a) (ak = 0.10), demonstrates
that the energy flux is conserved within 1 % through the first quasi-recurrence cycle,
with no noticeable loss after the steepened region (the mean energy flux eventually
levels to a value very near that at the wavemaker). Thus, the flux of energy is
conserved better in this case than, for example, in figure 2(a), which is consistent
with the smaller surface slopes encountered, see table 1. With ak = 0.125 (figure 4b)
there are noticeable fluctuations in the computed energy flux during the region where
the waves are steepened. Here, the flux of energy is conserved within roughly 3 %
throughout the domain. Based on the relatively level values during the periods of
de-modulation, we estimate a 1 % loss after the first quasi-recurrence cycle, with
an additional 2 % loss through the second cycle. Thus, in this case, the flux of
energy is conserved within roughly the same level as the class I plane wave cases
considered earlier. In support of the demonstration in § 3 that the weak dissipation
from the smoothing filter is not artificially promoting the observed behaviour, we
note that otherwise identical simulations for the case with ak = 0.10 with significantly
more (ns = 1) and less smoothing (ns = 128) lead to essentially the same evolution as
depicted in figure 3(b). Moreover, refining the grid in either the x- or y-directions (with
either Lx/�x =64 or Ly/�y =64, which pushes the dissipative effects from the filter
to yet higher wavenumbers), also leads to the same behaviour as depicted here (this
has been confirmed for both ak = 0.10 and 0.125). Thus, these results are insensitive
to the filtering and resolution, and suggest that the observed asymmetric behaviour is
part of the conservative (non-breaking) evolution of short-crested wave instabilities.

Alternatively, we expect that the simulated class Ia cases with ak � 0.15 (depicted in
figures 3c and 3d) would lead to physical breaking, as the computed maximum surface
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slopes in table 1 significantly exceed the previously mentioned empirical threshold.
This is further supported by grid refinement studies (using �x = Lx/64) with ak = 0.15
and 0.20, which lead to a computational breakdown, even when the smoothing filter is
applied after every ns = 2 and 1 time steps, respectively. For these cases, the location of
incipient breaking has been estimated as before in figures 3(c) and 3(d), again marked
by the vertical dashed lines. In both cases this location coincides with a distinct
qualitative shift in the evolution. In figure 3(c) this marks the break in the quasi-
recurrence cycle, while in figure 3(d) this corresponds closely to the rapid decrease
of the primary wave and upper side-band amplitudes. It therefore seems likely that
these qualitative changes in the evolution are driven in part by the high-wavenumber
dissipation of the smoothing filter (in combination with the large steepness of the
waves), resulting in a permanent downshift of the peak frequency. We again stress
that as wave breaking has not been physically modelled, the computed evolution
beyond the onset of breaking should only be considered qualitatively. These results
do suggest, however, that dissipation is important in breaking the quasi-recurrence
cycle, resulting in the chaotic (i.e. disorderly) evolution of the primary frequency and
upper side-band.

In all of the short-crested wave simulations, additional frequencies to those shown
in figure 3 are important. This is illustrated in figure 5, which shows full spectra of
Fourier amplitudes for each of the cases considered. In particular, it is seen that the
transfer of energy to the lower side-band is accompanied by a similar transfer to more
distant upper side-band frequencies. We find qualitatively similar results for the class
Ia simulations with ak � 0.15 up to the estimated breaking point, which are then
followed by a significant transfer to the more distant lower side-band frequencies.
This can be seen, for example, in figures 5(e)–5(h), which show full spectra for the
cases with ak =0.15 and 0.20 before and after the estimated breaking locations. Note
also that a similar growth in the more distant upper side-bands occurs in the class
I plane wave simulations with ak � 0.11 (from § 3) in the regions where the peak
frequency is temporarily downshifted.

To further characterize the spectral development in each of the class Ia cases
considered, the spatial evolution of the mean frequency defined as

ω =

M∑
m=1

ωm|am|2

M∑
m=1

|am|2
, (4.12)

is provided in figure 6 (normalized by the computed values just beyond the wavemaker
region), with M the number of discrete frequencies comprising the Fourier transform
of time series along the domain. Figure 6 shows that with ak = 0.10 the mean frequency
is practically constant along the domain, whereas with ak = 0.125 it becomes slightly
upshifted during the periods of maximum modulation (owing to the previously
noted energy transfer to more distant upper side-band frequencies). This is consistent
with results of Trulsen & Dysthe (1997) who found a similar upshifting of the
mean frequency in the context of three-dimensional class I plane wave instabilities.
Alternatively, the breaking cases (ak � 0.15) result in a pronounced downshift in
the mean frequency, beginning immediately after the estimated breaking locations.
The marked differences seen in figure 6 further support that we have accurately
distinguished between breaking and non-breaking cases.

To provide an indication of the physical appearance of the computed quasi-
recurrent unstable class Ia short-crested wave evolution, segments of the computed
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Figure 5. Computed spectra of Fourier amplitudes from the class Ia simulations with (a, b)
ak = 0.10 at x ≈ 104Lx/154Lx , (c, d) ak = 0.125 at x ≈ 73Lx/111Lx , (e, f ) ak = 0.15 at
x ≈ 61Lx/167Lx , and (g, h) ak = 0.20 at x ≈ 23Lx/51Lx .
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Figure 6. Computed evolution of the relative mean frequency for class Ia simulations with
(full line) ak = 0.10, (line with dots) 0.125, (line with circles) 0.15, and (line with squares) 0.20.
∗, the estimated breaking locations for ak =0.15 and 0.20.
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Figure 7. Segments of the computed free surface from the simulation of class Ia instability
with ak = 0.10 and θ =80◦ covering (a) 0 � x � 20Lx , (b) 59Lx � x � 79Lx , (c) 102Lx � x �
122Lx , (d) 150Lx � x � 170Lx . The vertical scale is exaggerated 30 times.

free surface from the simulation with ak = 0.10 are shown in figure 7. Note that in
this, as well as all other surface plots included herein, the free surface is reflected a
single time across the y-axis, to cover at least a single full transverse wavelength. From
this figure it is seen that the initially regular short-crested wave pattern, figure 7(a),
eventually becomes modulated, as in figure 7(b). When the side-bands are near their
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respective peaks, figure 7(c), the wavetrain has almost completely focused into steep
three-dimensional pulses. These eventually develop back to a reasonably regular short-
crested wavetrain, as depicted in figure 7(d), resembling (though certainly not identical
to) the incident short-crested waves. This evolution is in many ways analogous to
the classical two-dimensional class I instability, though the recursion is again less
complete.

A segment of the computed free surface for the steepest case with ak =0.20 is
similarly shown in figure 8, covering the region 0 � x � 40Lx . Here the initially
regular incident wavetrain again begins to develop into steepened three-dimensional
pulses. Beyond the estimated breaking location (marked by the arrow), however, the
appearance changes dramatically, with the free surface rapidly disintegrating into one
that is rather irregular, which then persists to the end of the domain.

It must finally be mentioned, that additional testing has indicated that the precise
evolution for a given steepness is somewhat sensitive to the chosen value for p (or
equivalently δ), with less dominant values sometimes (somewhat surprisingly) leading
to even more pronounced separation of the side-bands than observed, for example,
in figures 3(a) and 3(b). Based on our experience, however, the series presented in
this subsection provides a good indication as to how the unstable class Ia evolution
(using near dominant perturbations) varies with incident steepness.

4.3. Simulation of class Ib short-crested wave instabilities

Whenthe angle θ is neither too large nor too small (roughly around 55◦), Ioualalen &
Kharif (1994) found that the dominant lowest-order short-crested wave instability
is of so-called class Ib. This type of instability has been reportedly observed in the
physical experiments of Kimmoun et al. (1999a). Examples of class Ib instability
regions can be found in figures 8 and 9 of Ioualalen & Kharif (1994). However, of
the specific short-crested wave examples considered, only in their figure 9(b), with
ak =0.20 and θ =60◦, is this type of instability dominant. We will therefore use this
single case to determine the input parameters for an example simulation of a class
Ib instability. From their figure 9(b), the dominant class Ib instability corresponds
roughly to q = 0.20, with p = q tan θ = 0.173. The parameters used for this simulation
are again summarized in tables 2 and 3.

For the simulation of the class Ib instability, the perturbation wavenumber
components for the upper side-band (subscript a) are again as defined in (4.9),
with those of the lower side-band now changed to

(kbx, kby) = (sin θ − p, cos θ − q)k. (4.13)

The corresponding perturbation frequencies are again as defined in (3.5), with δ as
given in table 2. Hence, the perturbations will now excite the two resonant quartet
interactions

2k01 = ka1 + kb1, 2k02 = ka2 + kb2, (4.14)

both in conjunction with (3.7). Unlike the class Ia instability, the two primary short-
crested wave components k01, k02 are now involved in separate resonant interactions,
both analogous in form to the familiar quartet resonance for a classical class I plane
wave instability (3.8).

Note that dominant class Ib short-crested wave instabilities have q > 0, and hence
generally require the resolution of multiple transverse wavelengths for their numerical
simulation. To ease the computational burden, the spatial resolution has therefore
been reduced slightly for the following simulation, as indicated in table 3. Additionally,
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Figure 8. Computed free surface from the simulation of class Ia short-crested wave instability with ak = 0.20 and θ = 80◦, covering the range
0 � x � 40Lx . The arrow marks the estimated location of incipient wave breaking. The vertical scale is exaggerated 15 times.
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Figure 9. Computed evolution of the primary frequency (full line) and lower/upper side-bands
(long/short dashed lines) from the simulation of class Ib short-crested wave instability with
ak = 0.20, θ = 60◦ and ε = 0.10. The circles indicate the theoretical growth as in figure 3, here
with Im{σ} =0.0044. The dashed vertical line indicates the estimated breaking location.

the relative perturbation strength is increased to ε =0.10, to promote a faster growth
of the unstable side-bands.

The evolution of the primary wave ω0 and the upper/lower side-bands ωa/ωb for
this case is shown in figure 9. The perturbations are again seen to follow closely the
theoretical growth (again indicated by ◦) during the initial growth phase, with the
upper side-band now maintaining an amplitude slightly larger than the lower. At
roughly the estimated breaking location, empirically determined as before, the growth
of the upper side-band ceases, maintaining a nearly constant amplitude for roughly
10Lx , before ultimately shrinking back down to secondary importance. The lower
side-band and the primary frequency maintain roughly equivalent amplitudes after
the initial downshift, seemingly competing for dominance. We again stress, however,
that the computed results beyond the onset of breaking should only be taken as
qualitative.

The computed free surface, covering the region 0 � x � 50Lx for the class Ib short-
crested wave simulation is shown in figure 10. Within this region, the initially (nearly)
regular short-crested wave pattern first develops into one that is highly modulated.
Unlike the earlier class Ia instabilities considered, however, each of the primary
short-crested wave components is here independently modulated, leading to striking
‘X’-shaped surface patterns. This is consistent with expectations from the resonant
conditions (4.14). Beyond the estimated onset of breaking (indicated by the arrow)
the free surface becomes more irregular, somewhat resembling that from the end of
figure 8.

It is clearly of interest to consider additional class Ib short-crested wave instabilities,
and perhaps to continue the present simulation on a longer domain. Because of the
large computational demands, however, this is left for future study.

5. Discussion
Throughout this paper, the onset of wave breaking has been estimated using an

empirical threshold for the forward surface slope, as discussed in § 3. In all cases where
breaking has been detected (see again figures 1c, 1d , 3c, 3d , and 9), this estimation
has coincided with a distinct qualitative break in the harmonic evolution, giving
some confidence as to its physical relevance. This simple empirical threshold should
not be regarded as universal, however, as the onset of wave breaking is inherently
complicated. As an additional check, we will now re-visit our various results within the
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Figure 10. Computed free surface from the simulation of class Ib short-crested wave instability with ε = 0.10, ak =0.20 and θ = 60◦. The plot
covers the region 0 � x � 50Lx . The arrow marks the estimated location of incipient wave breaking. The vertical scale is exaggerated 20 times.
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Figure 11. Comparison of the approximate threshold breaking incident wave steepness for
class I plane wave instabilities (full line with dots, adapted from Banner & Tian 1998;
Henderson et al. 1999) with parameters used in class I plane wave (θ = 90◦) simulations
(circles, including results of Madsen et al. 2002), class Ia short-crested wave simulations with
θ = 80◦ (squares), and the class Ib short-crested wave simulation with θ = 60◦ (triangle). An
open/filled marker indicates a case believed to be non-breaking/breaking. Note that some
class Ia cases not specifically discussed in § 4.2 are included here for completeness.

context of the class I plane wave (incident steepness) breaking thresholds of Banner &
Tian (1998) and Henderson et al. (1999), which were used earlier in § 3. Such a compa-
rison is, of course, only strictly valid for the plane wave cases. However, as the class
Ia short-crested cases considered herein are near the plane wave limit (with θ = 80◦),
such a comparison seems reasonable, at least as a preliminary indication. As short-
crested wave instabilities for a given steepness are weaker than their plane wave
counterparts (Ioualalen & Kharif 1994), there is reason to expect that the threshold
breaking steepnesses for short-crested wave instabilities would be larger than for
class I plane wave instabilities. This expectation is supported by table 1, which
shows that the computed maximum surface slopes for a given wave steepness are
generally less for the short-crested wave simulations than for the corresponding class
I simulations. Moreover, Roberts (1983) found that steady short-crested waves can
achieve steepnesses up to 60 % larger than plane waves, though (from his figure 4)
the differences are not so pronounced, for example, with θ = 80◦. In any case, for the
above mentioned reasons, we expect that the class I plane wave threshold steepnesses
are probably conservative for short-crested wave instabilities, though this remains to
be formally demonstrated.

A comparison of the parameters used in our various simulations with these earlier
results is provided in figure 11. Here, the full line connects values for the lowest
incident wave steepness leading to class I breaking from figure 1 of Henderson et al.
(1999), substituting the previously mentioned value ak = 0.1125 from Banner & Tian
(1998) (their figure 2) at p = 0.2 (rather than ak = 0.12 from Henderson et al. 1999).
Note that the x-axis of figure 11 (simplifying to the variable p with θ = 90◦) is the
inverse of their x-axes (depicting the number of waves in one modulation). Results
are shown for our computed class I plane wave cases (circles, including the results
of Madsen et al. 2002), the class Ia short-crested wave cases (squares), as well as
for the lone class Ib case (triangle, not discussed further). As was established in § 3,
the computed class I results are consistent with the previously established thresholds,
with all non-breaking (recurrent) cases lying below the full line, and with all breaking
(asymmetric) cases above the full line.
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The class Ia short-crested wave cases considered herein are also, for the most part,
consistent with the class I thresholds. The lone exception is the case with ak = 0.125,
which lies above the full line in figure 11, but does not exceed our empirical breaking
threshold slope 0.61 (see table 1). Nor is there any distinct break in the harmonic and
mean frequency evolutions depicted in figures 3(b) and 6 for this case. This apparent
discrepancy is therefore not of great concern, as there is again reason to expect that
the class I threshold line is conservative (i.e. too low) with respect to breaking for
short-crested wave instabilities. What is perhaps the most important observation from
this comparison, is that the class Ia case, e.g. with ak = 0.10, is well below even the
(presumably conservative) class I threshold line. Hence, this comparison adds credence
to our earlier conclusion, that the observed asymmetric evolution within short-crested
wave instabilities is indeed part of the conservative (non-breaking) evolution. Note
again that we have found similar behaviour for class Ia cases with ak � 0.10, which
are also plotted in figure 11 for completeness.

These findings are, in many ways, qualitatively similar to those of Trulsen &
Dysthe (1997), who found that a permanent downshift in the peak frequency
could occur without dissipation within the context of three-dimensional class I
plane wave instabilities. While none of our non-breaking simulations lead to a
permanent downshift of the peak frequency, they do demonstrate a clear tendency
for a permanent energy transfer to the lower (three-dimensional) side-band, which is
the basic mechanism of their observed downshift. Moreover, as previously mentioned,
Trulsen & Dysthe (1997) found that, even when the peak frequency was downshifted,
the mean frequency tended to be slightly upshifted, consistent with our non-breaking
class Ia results (e.g. with ak =0.125) presented in figure 6. Alternatively, the steepest
cases considered here (where dissipation from the smoothing filter is believed to
have prevented wave breaking) generally lead to a permanent downshift in both the
peak and mean frequencies (see again figures 3c, 3d , 5f , 5h, and 6). Hence, these
simulations additionally support the conclusion of Trulsen & Dysthe (1997), that the
full explanation of the frequency downshift phenomenon probably involves combined
effects from the nonlinear three-dimensional evolution and dissipative wave breaking.

6. Conclusions
This work provides, to our knowledge, the first numerical simulations involving the

instability of doubly periodic progressive short-crested waves. The simulations use a
numerical finite-difference model based on the fully nonlinear high-order Boussinesq-
type formulation of Madsen et al. (2002), as described by Fuhrman & Bingham (2004).
As incident waves, the third-order short-crested solution of Hsu et al. (1979) has been
used, perturbed to excite the desired instability based on the analysis of Ioualalen &
Kharif (1994). These simulations have been limited to the study of lowest-order short-
crested wave instabilities (involving quartet resonant interactions), of so-called class
Ia and Ib.

Before considering short-crested wave simulations, however, the numerical model
has first been used to simulate a series of two-dimensional class I instabilities, with
steepness both above and below previously established breaking threshold (incident
wave) steepnesses from Banner & Tian (1998) and Henderson et al. (1999). It is shown
that below the threshold, the model correctly predicts the well-known classical (nearly
symmetric) recurrence cycle, whereas above this threshold, the evolution leads to an
asymmetric evolution, characterized by a permanent transfer of energy to the lower
side-band, with a smoothing filter apparently serving as the dissipative mechanism
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promoting this behaviour for sufficiently steep waves. This series of simulations
convincingly demonstrates the ability of the model to predict accurately the correct
qualitative behaviour in these well-known (and closely related) physical circumstances.
Additionally, these simulations have been used to formulate an empirical breaking
threshold surface slope, used throughout this work to estimate the location of incipient
breaking.

This numerical study has primarily focused on the simulation of class Ia instabilities,
which are known to be dominant when short-crested waves are near their standing
(θ = 0◦) and plane wave (θ = 90◦) limits. This type of instability involves simultaneous
resonant interactions of both short-crested wave components with those from two
separate short-crested perturbation waves. These simulations have considered cases
near the plane wave limit (with θ = 80◦), covering the range of incident wave steepness
0.10 � ak � 0.20. A close match of the computed and theoretical unstable growth
rates is obtained near the inception, further validating the model. The long-term
evolution of these short-crested wave instabilities is shown to be qualitatively different
from the well-known evolution of classical class I plane wave instabilities. Rather than
following a nearly symmetric recurrence cycle, there is a permanent transfer of energy
to the lower side-band after the initial growth phase (of a quasi-recurrence cycle),
even in weakly nonlinear simulations presumably well below breaking. This is also
accompanied by an additional transfer of energy to more distant upper side-bands,
which in turn tends to cause an upshift in the mean frequency.

As the steepness is further increased (ak � 0.15), there is a permanent downshift in
both the peak and mean frequencies (driven in part by dissipation from the filter), with
the lower side-band rising to a permanent strength near that of the primary incident
wave, effectively breaking the recurrence cycle. Based on our empirical surface slope
threshold, however, these cases would lead to physical breaking, and have therefore
only been qualitatively modelled beyond this location. In these cases the downshift
is accompanied by the chaotic (disorderly) evolution of the primary frequency and
upper side-band.

Computed free surfaces have also been shown for class Ia cases having initial
steepness ak = 0.10 and 0.20, corresponding, respectively, to weakly and highly
nonlinear cases. The weakly nonlinear case (following a quasi-recurrent evolution) is
shown to lead to the formation of steep three-dimensional pulses on the free surface,
in some ways analogous to the classical weakly nonlinear two-dimensional (class I)
evolution. The computed free surface from the steeper simulation follows a similar
evolution to the estimated breaking location, followed by the rapid disintegration of
the initially regular short-crested wavefield into a rather irregular free surface.

A single case of class Ib instability has also been considered; this type of instability
is known to dominate when the short-crested waves are more three-dimensional, with
θ ≈ 55◦. For this type of instability, the two components of the incident short-crested
wave are involved in separate resonant interactions. As the transverse perturbation
wavenumbers for dominant class Ib instabilities do not match those of the primary
short-crested wave, the numerical simulation of this phenomenon is generally more
computationally demanding than for class Ia, requiring the resolution of multiple
transverse primary wavelengths. Hence, the current investigation has been limited
to the lone case with ak = 0.20 and θ = 60◦, again inspired by the analysis of
Ioualalen & Kharif (1994). The computed growth rate again closely matches the theory
up to the estimated location of incipient breaking. Beyond this point, the evolution
is qualitatively similar to the steeper class Ia cases, with the primary frequency and
lower side-band in this case seemingly competing for dominance. The computed free
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Figure 12. Amplification portraits from a Fourier analysis of the tenth-order, 109-point
Savitzky–Golay smoothing filter used in the numerical simulations.

surface initially leads to striking ‘X’-shaped patterns (as both primary short-crested
wave components are individually modulated), before ultimately becoming irregular
in its appearance following the initial downshift.

The simulations considered in this work represent the simplest physical scenarios for
the study of three-dimensional instabilities of genuinely three-dimensional progressive
waves. These simulations are therefore of fundamental importance in understanding
three-dimensional wave spectrum development. The results add to mounting evidence
that the conservative (non-breaking) evolution of three-dimensional spectra can be
qualitatively different than predicted by classical two-dimensional descriptions.

We wish to thank the Danish Technical Research Council (STVF grant 9801635)
for financial support, and the Danish Center for Scientific Computing for providing
super-computing resources. Their support is greatly appreciated.

Appendix. Fourier analysis of the Savitzky–Golay smoothing filter
In this Appendix we quantify the dissipative effects from the tenth-order (109-point,

octagon-shaped) Savitzky & Golay (1964) type smoothing filter employed throughout
this work. To simplify the analysis, we consider a single horizontal dimension, which
corresponds to summing the columns (or rows) of the two-dimensional filter. This
leads to the one-dimensional 13-point filter

[−0.000311 0.00373 −0.0205 0.0684 −0.154 0.246 0.713

0.246 −0.154 0.0684 −0.0205 0.00373 −0.000311],

where the first three significant digits are shown for each coefficient. We consider a
single application of the filter on a sinusoidal mode having wavelength Lx . Thus, the
quantity Lx/�x defines the spatial resolution in terms of the number of grid points per
wavelength. A standard Fourier analysis leads to the amplification portraits depicted
in figure 12, where A is the amplification factor for a given resolution. Thus, A< 1
implies dissipation of a given mode. Clearly, from figure 12(a), significant dissipation
is limited to high wavenumber modes, discretized with roughly Lx/�x � 4. In most of
the simulations considered herein, this corresponds physically, for example, to bound
eighth (and higher) harmonics, provided that the primary wavelength is discretized
with 32 grid points. As the resolution is increased, the amplification factor rapidly
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approaches unity. For example, as seen in figure 12(b), any dissipation of such a
primary wavelength discretized with 32 grid points is negligible, with (1 − A) = 10−12.
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